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A generalization of the classical monomer site-bond percolation problem is studied in which linear k-uples
of nearest neighbor sites �site k-mers� and linear k-uples of nearest neighbor bonds �bond k-mers� are inde-
pendently occupied at random on a square lattice. We called this model the site-bond percolation of polyatomic
species or k-mer site-bond percolation. Motivated by considerations of cluster connectivity, we have used two
distinct schemes �denoted as S�B and S�B� for k-mer site-bond percolation. In S�B�S�B�, two points are
said to be connected if a sequence of occupied sites and �or� bonds joins them. By using Monte Carlo
simulations and finite-size scaling theory, data from S�B and S�B are analyzed in order to determine the
critical curves separating the percolating and nonpercolating regions.
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I. INTRODUCTION

The site-bond percolation problem and its applications
have been studied for a very long time �1–7�. In a recent
contribution, we reported a generalization of the classical
site-bond percolation model in which pairs of nearest neigh-
bor sites �site dimers� and linear pairs of nearest neighbor
bonds �bond dimers� are independently occupied at random
on a square lattice. We called that model the dimer site-bond
percolation model �8�. The present paper goes a step further,
analyzing the more general model of k-mer site-bond perco-
lation for k�2. As was mentioned, a great number of articles
have shown the importance of Random Sequential Adsorp-
tion �RSA� and the equilibrium processes related to dimers.
However, quite similar attention has been given to problems
where k-mers are randomly deposited on a surface. These
studies are motivated by the important experimental back-
ground �see �9� and references therein�. Furthermore, the nu-
merical results of RSA of linear segments or “needles” de-
serve special attention. There are several contributions in the
literature studying �a� their tendency to the jamming state
�10–14�, �b� their percolative behavior �15–17�, and �c� the
interplay between the jamming and percolative states
�18–20�. In addition, it has been realized that continuum pro-
cesses are obtained from lattice RSA processes in the limit of
“large molecules” �9�.

We consider a periodic square lattice of linear size L on
which linear site and bond k-mers are independently depos-
ited at random. The procedure is as follows. �1� A set of k
linear nearest neighbor sites is randomly selected; if it is
vacant, the site k-mer is then adsorbed on those sites. Other-
wise, the attempt is rejected, and �2� a set of k nearest neigh-

bor bonds �aligned along one of the lattice axes� is randomly
chosen; if it is vacant, the bond k-mer is then dropped onto
the lattice. Otherwise, the attempt is rejected. In any case, the
procedure is iterated until Ns site k-mers and Nb bond k-mers
are adsorbed and the desired concentrations �ps=kNs /L2 , pb

=kNb /2L2� are reached.
We may then define site-and-bond �S�B� and site-or-

bond �S�B� percolation: in S�B, a cluster is considered to
be a set of occupied bonds and sites in which the bonds are
joined by occupied sites, and the sites are joined by occupied
bonds. In S�B, a bond or site contributes to cluster connec-
tivity independently of the occupation of its end points.

A typical phase diagram of site-bond percolation in the
presence of multisite occupancy �dimers� is shown in Fig. 1.
The critical curves corresponding to the S�B and S�B
problems limit the percolating and nonpercolating regions,
respectively. The main differences between the phase dia-
gram in Fig. 1 and the corresponding one for classical site-
bond percolation �4–6� are associated with the parameters ps

j,
pb

j , ps
c, and pb

c, which will be presented in detail in Sec. II,
along with the simulation scheme and the finite-size scaling
theory. The phase diagram in the ps-pb space for linear site
and bond k-mers on a square lattice is reported in Sec. III.
Finally, our general conclusions are given in Sec. IV.

II. BASIC DEFINITIONS, SIMULATION SCHEME, AND
FINITE-SIZE SCALING ANALYSIS

In the filling process, objects of finite size �k-mers� are
randomly deposited �irreversibly adsorbed� on an initially
empty substrate or lattice with the restriction that they must
not overlap with previously added objects. Due to the block-
ing of the lattice by the already randomly adsorbed elements,
the limiting or jamming coverage ps

j = ps�t= � � �pb
j = pb�t

= � �� is less than that corresponding to the close packing
�ps

j �pb
j ��1�. Note that ps�t� �pb�t�� represents the fraction of

total site �bond� lattice covered at time t by the deposited
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objects. Consequently, ps�pb� ranges from 0 to ps
j�pb

j � for
objects occupying more than one site and the total area in the
ps-pb phase diagram is ps

jpb
j �see Fig. 1�. An extensive over-

view of this field can be found in the excellent work by
Evans �9� and references therein. More recently, leading con-
tributions have been presented in Refs. �18–25� treating the
relationship between the jamming coverage and the percola-
tion threshold.

In order to predict the behavior of the system in the ther-
modynamic limit it is required that our long scale numerical
simulations become independent of the k-mer size. A study
of the finite-size effects allows us to make a reliable extrapo-
lation to the k→� limit when the limit L→� is taken be-
fore. This tendency toward the thermodynamic limit ensures
that both the kinetic and the jammed saturation state are
nontrivial, which is an appropriate model for many physical,
chemical, and biological processes where the microscopic
steps are effectively irreversible �e.g., chemical bond forma-
tion� and where equilibration is not possible on the time
scale of the experiment �9�.

Another mathematically possible limits could also be ana-
lyzed. In fact, one could consider L /k→const �or L /k
�O�1��. In this framework, the values of the percolation
threshold and the jamming coverage strongly depend on the
selected constant. In the trivial case L /k→1, the jammed
state corresponds to ps

j�k�= pb
j �k�=1 and the total area in the

ps-pb phase diagram is ps
jpb

j =1 regardless of the value of k. A
recent work, Ref. �26�, claims “to be the first attempt to
study percolation of polymers on a lattice with multiple bond
occupancies in this particular scaling limit �L /kO�1��” in-
spired in a particular experimental setup. On the other hand,
percolation of linear k-mers on a lattice of constant size L
has been treated. In this case, an abrupt increment of pc�k�,
which depends on L, is observed upon increasing k �27,28�.
One fundamental feature is preserved in all these limits. This
is that the quantities of interest are dependent on the lattice
size L. On the contrary, our study is performed in the direc-
tion of Ref. �9�, where the size of the linear k-mer can always
be neglected as compared with the lattice size.

In order to calculate the jamming limits for different val-
ues of k, we use a standard Monte Carlo procedure �29�. At

each Monte Carlo attempt, a k-uple of linear neighboring
sites �bonds� is chosen at random. Then, the sites �bonds� are
occupied provided that all of them are empty; otherwise the
attempt is rejected. As in Ref. �29�, the dimensionless Monte
Carlo time variable t may therefore be defined by having one
attempt per each element �sites and bonds� of the lattice in
the unit time step t=1. Thus, for the N-element lattice, the
time step t=1 corresponds to N deposition-attempt Monte
Carlo steps described earlier. In the calculations, we use
square lattices of 104k2 sites �2�104k2 bonds� and t runs up
to no sites �bonds� for deposition are available. In addition,
each data set was averaged over 5000 runs.

In Fig. 2, the jamming limits for linear site k-mers, ps
j�k�,

and linear bond k-mers, pb
j �k�, are plotted as a function of k.

At the beginning, for small values of k, the curves rapidly
decrease. However, they flatten out for larger values of k and
finally asymptotically converge toward a definite value as
k→�.

The behavior of the curves in Fig. 2 can be associated
with a decreasing function. For each case, a saturation value
can be found in the limit for k→�. Thus, ps

j���=0.6838�1�
and pb

j ���=0.7546�1� for site and bond k-mers, respectively.
As it will be shown below, the values of ps

j�k� and pb
j �k�

allow us to calculate the extremes of the critical curves cor-
responding to the S�B model. On the other hand, the critical
curves corresponding to S�B model varies between the
point �ps

c�k� , pb=0.0� at the left and the point
�ps=0.0, pb

c�k�� at the right, where ps
c�k��pb

c�k�� represents the
threshold percolation for pure site �bond� k-mers on square
lattices.

In Fig. 3, the percolation thresholds for linear site k-mers
and linear bond k-mers are plotted as a function of k. Each
point was calculated by using Monte Carlo simulation and
finite-size scaling theory according to the Yonezawa tech-
nique �17,30,31�. The results can be well correlated by mean
of an exponentially decreasing function:

px
c�k� = px

c��� + �xexp�− k/�x� and �x � s,b� , �1�

px
c���, �x, and �x being fitting parameters. The fitting param-

eters obtained are the following: ps
c���=0.461�1�, �s

FIG. 1. Phase diagram �in the ps-pb parameter space� corre-
sponding to the dimer site-bond percolation problem on square
lattices.

FIG. 2. Jamming coverage as a function of k for linear site
k-mers �open circles� and linear bond k-mers �filled circles� on
square lattices. The asymptotic limits ps

j���=0.6838�1� and pb
j ���

=0.7546�1� are shown.
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=0.20�1�, and �s=2.8�2� for site k-mers, Fig. 3�a�, and
pb

c���=0.071�1�, �b=0.482�2�, and �b=9.2�2� for bond
k-mers, Fig. 3�b�.

Once the limiting parameters �ps
j , pb

j , ps
c, and pb

c� are cal-
culated, each point corresponding to the critical curves S�B
and S�B can be obtained by following the next steps: �a� the
construction of the lattice for the desired fractions ps and pb
of site k-mers and bond k-mers, respectively; �b� the map-
ping L→L� from the original site-bond lattice L to an ef-
fective bond lattice L� where each bond and its end point
sites of L transform into a bond one of L� �the rules for the
mapping have been detailed in Ref. �8��; and �c� the cluster
analysis by using the Hoshen and Kopelman algorithm �32�
on the effective bond lattice �the percolation threshold in the
original and effective lattices must be equal�. In the last step,
the existence of a percolating island is verified. n runs of
three such steps are carried out to obtain the probability R
=RL

X�ps , pb� that a lattice composed of L�L�2L�L� sites
�bonds� percolates at concentration �ps , pb� �33�. Here, as in
Ref. �30,31�, the following definitions can be given accord-
ing to the meaning of X: �a� RL

I �ps , pb� is the probability of
finding a cluster that percolates both in a rightward and in a
downward direction; �b� RL

U�ps , pb� is the probability of

finding either a rightward or a downward percolating cluster;
and �c� RL

A�ps , pb�� 1
2 �RL

R�ps , pb�+RL
D�ps , pb��� 1

2 �RL
I �ps , pb�

+RL
U�ps , pb��. Then the procedure is repeated for different

values of �ps , pb�, L, and k. A set of n=5�104 independent
samples is numerically prepared for each pair �ps , pb� and
L /k �L /k=8,16,24,32,40,48,56�.

In Fig. 4�a�, the probabilities RL
I �circles�, RL

U �triangles�,
and RL

A �squares� are presented for dimer S�B percolation, a
fixed value of ps �=0.80�, and variable pb. As can be ob-
served, curves corresponding to different sizes cross each
other at a unique universal point, which depends on the cri-
terion X used, and those points are located at very well de-
fined values on the pb axes determining the critical percola-
tion threshold pb

c for each ps �in this case ps=0.80�.
The finite-size scaling theory allows for another efficient

route to estimate pb
c from the extrapolation of the positions

pb
cX�L� of the maxima of the slopes of RL

X. For each criterion
one expects that �33�

FIG. 3. Percolation threshold as a function of k for �a� linear site
k-mers and �b� linear bond k-mers on square lattices. The behavior
of the fitting curves are described according to Eq. �1�. The
asymptotic limits �a� ps

c���=0.461�1� and �b� pb
c���=0.071�1� are

shown. The size of the points is larger than the corresponding error
bars.

FIG. 4. �a� Fraction of percolating lattices for S�B percolation
of dimers, ps=0.80, and variable pb. Different criteria, U �triangles�,
I �circles�, and A �squares�, are used for establishing the spanning
cluster. Vertical dashed lines denote the percolation threshold in the
thermodynamic limit L→�. In the inset, we present the extrapola-
tion of pb

c toward the thermodynamic limit according to the theoret-
ical prediction given by Eq. �2�. Circles, squares, and triangles de-
note the values of pb

c�L� obtained by using the criteria I, A, and U,
respectively. The size of the points is lower than the corresponding
error bars. �b� As part �a� for S�B percolation of dimers, ps

=0.45, and variable pb.
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pb
cX�L� = pb

c + AXL−1/� �2�

where AX is a nonuniversal constant and � is the critical
exponent of the correlation length. The inset in Fig. 4�a�
shows the extrapolation toward the thermodynamic limit of
pb

cX�L� according to Eq. �2� for different criteria. This is done
with �=4/3, since our model belongs to the same universal-
ity class as random percolation �8,17�, as expected. Several
conclusions can be obtained from the figure: �a� all the
curves are well correlated by a linear function, �b� they have
a quite similar value for the ordinate in the limit L→�, and
�c� the fitting determines a different value of the constant A
depending on the type of criterion used. It is also important
to note that pb

cA�L� gives an almost perfect horizontal line
which is a great advantage of the method because it does not
require precise values of critical exponent � in the process of
estimating percolation thresholds. The maximum of the dif-
ferences between 	pb

cI���− pb
cA���	 and 	pb

cU���− pb
cA���	

gives the error bar for each determination of pb
c.

The procedure done in Fig. 4�a� is repeated for the dimer
S�B percolation, a fixed value of ps �=0.45�, and variable
pb. The results are shown in Fig. 4�b�.

It is worth noticing that the analysis in Fig. 4�a� �4�b��
corresponds to sequences of Monte Carlo simulations
through the �a−b���c−d�� path in Fig. 1. In general, from the
point of view of calculations, we move along �a−b�-like
horizontal paths. In other words, we set ps�constant and
vary pb �34�.

III. PHASE DIAGRAM

The finite-size scaling analysis �discussed in Sec. II� has
been used in the whole range of the variables ps and pb in
order to determine the percolation thresholds and the phase
diagrams for different sizes of the percolating species rang-
ing between k=2 and 11. Thus, the resulting ps-pb phase
diagrams for k-mer site-bond percolation are shown in Fig. 5,
in comparison with the standard site-bond percolation for
monomers.

The critical curves corresponding to the S�B model are
limited by ps

j�k� and pb
j �k�, upper and lower extremes, respec-

tively. The two envelope curves formed by those points are
shown as solid thick lines in Fig. 5. On the other hand, the
coexistence curves corresponding to the S�B model vary
between the points �ps

c�k� , pb=0.0� at the left and the points
�ps=0.0, pb

c�k�� at the right. These features represent one of
the most important differences between the percolation prob-
lem in the presence of single and of multisite occupancy. For
both cases considered here �S�B and S�B� and k ranging
between 1 and 11, the critical curve tends to be a straight line
upon increasing the k-mer size. This effect is more pro-
nounced for the S�B case, where a linear coexistence curve
is reached just for k�5, while values of k�9 are needed to
show a similar feature in the case of S�B.

The extremes of the phase boundary can be calculated in
the limit k→� as follows. For the S�B case, the left �right�
extreme point is obtained from the crossing between the
horizontal �vertical� line ps

j����pb
j ���� and the corresponding

envelope curve described above. In the case of S�B, the
extremes are obtained straightforwardly ��ps

c�k= � � , pb

=0.0� at the left and �ps=0.0, pb
c�k= � �� at the right�. How-

ever, the complete determination of the line for the coexist-
ence curve should require either an extensive numerical
simulation with systems of larger sizes �beyond our present
computational facilities� or an analytical argument support-
ing the prediction that the coexistence curve tends to be lin-
ear for k→� as was shown for 9�k�11 �out of our present

FIG. 6. �a� ��b�� Percolating �nonpercolating� area as a function
of k for the k-mer site-bond percolation problem on square lattices.
The behavior of the fitting curve is described according to Eq. �3�.
The asymptotic limit is shown.

FIG. 5. Phase diagrams �in the ps-pb parameter space� corre-
sponding to the k-mer site-bond percolation problem on square lat-
tices for different values of k as indicated. The size of the points is
larger than the corresponding error bars.
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reach�. It is important to emphasize that the behavior of the
percolation threshold as a function of the parameters of the
system is still now an open problem and only empirical re-
lations exists there �35�.

As can be observed, the areas of the percolating and non-
percolating regions diminish with respect to the correspond-
ing ones for standard site-bond percolation. Thus, the perco-
lating region 	P and the nonpercolating area 	NP are
exponentially decreasing functions of k �see Figs. 6�a� and
6�b�, respectively�. In fact, the points of the figures are well
correlated with the following expression �dashed line in the
figures�:

	x�k� = 	x��� + Axexp�− k/
x� and �x � s,b� . �3�

According to Eq. �3� the fitting parameters for Fig. 6�a� are
	P���=0.0198�4�, AP=0.397�3�, 
P=0.73�2�. Results for
the nonpercolating area, Fig. 6�b�, show a slower conver-
gence than the case discussed before, the parameters being
	NP���=0.0164�2�, ANP=0.275�4�, and 
NP=4.63�7�.

IV. CONCLUSIONS

In this work, the phase diagram of the site-bond percola-
tion problem with multisite occupancy is addressed. The

phase transition involved in the problem has been studied by
using finite-size scaling theory.

The main characteristics of the phase diagrams obtained
are the following. �1� The jamming coverage plays an impor-
tant role in the system considered here. In fact, the critical
curves corresponding to S�B model are limited by the en-
velope functions ps

j�k� and pb
j �k�. �2� The critical curves cor-

responding to S�B model vary between the point
�ps

c�k� , pb=0.0� at the left and the point �ps=0.0, pb
c�k�� at the

right. �3� In both analyzed cases, S�B and S�B, the coex-
istence curves for values of k in the range 5�k�11 tend to
be straight lines. �4� The percolating and nonpercolating ar-
eas present exponentially decreasing behavior as a function
of k, which allows one to predict their values for k→�.

Finally, the present study encourages us to �a� develop an
analytical approximation for understanding the shape of the
coexistence curves and �b� determine the phase diagram of
the site-bond percolation in different geometries and for non-
linear k-mers. This work is in progress.
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